Introduction to linear algebra
Lesson1 几何解释与矩阵运算
the whole course key idea is matrix operations, not as words
row picture and column picture
row picture : 不同平面,曲线或者高维的面作图
column picture: linear combinations of columns of the matrix
行列式的计算
eg. 2 by 2 system
solution 1:
转化为linear combination
solution2:
but solution1 is better:
Ax is a combination of columns of A
Elimination (消元法)Gauss-Jordan Elimination
elimination is the way every software package solves equations
- 找到主元1
x
,第一行x的系数是1,所以把第一行作为主元行,find the pivot row (eliminate x use subtraction) ,主元行保持不变,对其他行进行消元 - 找到主元2
y
重复1. 最终得到一个上三角矩阵U
所以说,消元的目的是从原始矩阵A得到上三角矩阵U,这是计算科学中最普遍的运算。
- 如果0占据了主元的位置,进行行交换
- 如果找不到交换的,矩阵不可逆(not invertible)
back substitution
代入b到A
这个被称为增广矩阵(the augmented matrix),最后一列称为c
写成方程的形式:
this is the equation U x =c
the elimination matrix
行变换
- subtract 3 times row1 from row 2 ==E21==
- subtract 2 times row 2 from row 3 ==E32==
So:
permutation:
exchange rows 1 and 2
交换单位矩阵(identity matrix)的行
但左乘无法对矩阵
\left[
\left[
\left[
c_{ij} = (\text{row } i \text{ of } A) \cdot (\text{column } j \text{ of } B) = \sum_{k=1}^n a_{ik}b_{kj}
\text{column of } A \times \text{row of } B = [m \times 1][1 \times p] \
AB = \sum (\text{column of } A) \cdot (\text{row of } B)
A =
B =
C =
A^{-1}A = I = AA^{-1}
A =
A =
A^{-1}A = I \
A \times (\text{column } j \text{ of } A^{-1}) = \text{column } j \text{ of } I
\left[
将左侧变为单位阵,右侧就是A的逆矩阵 \
\left[
\left[
A^{-1} =
A = LU
(AB)(B^{-1}A^{-1}) = I \
AA^{-1} = I\ \text{两侧同时转置} \
(A^{-1})^\top A^\top = I \
(A^{-1})^\top = (A^\top)^{-1}
A =
E_{21} =
E_{21}A = U \
U =
A = LU \
L = E_{21}^{-1} =
有时候会把主元单独列出来 \
A =
E_{32}E_{21} = E \
L = E_{21}^{-1}E_{32}^{-1} =
P^{-1} = P^\top
$$
Introduction to linear algebra