Introduction to linear algebra

Lesson1 几何解释与矩阵运算

the whole course key idea is matrix operations, not as words

row picture and column picture

row picture : 不同平面,曲线或者高维的面作图

column picture: linear combinations of columns of the matrix

行列式的计算

eg. 2 by 2 system

solution 1:

转化为linear combination

solution2:

but solution1 is better:

Ax is a combination of columns of A

Elimination (消元法)Gauss-Jordan Elimination

elimination is the way every software package solves equations

  1. 找到主元1x,第一行x的系数是1,所以把第一行作为主元行,find the pivot row (eliminate x use subtraction) ,主元行保持不变,对其他行进行消元
  2. 找到主元2y 重复1. 最终得到一个上三角矩阵U

所以说,消元的目的是从原始矩阵A得到上三角矩阵U,这是计算科学中最普遍的运算。

  • 如果0占据了主元的位置,进行行交换
  • 如果找不到交换的,矩阵不可逆(not invertible)

back substitution

代入bA

这个被称为增广矩阵(the augmented matrix),最后一列称为c

写成方程的形式:

this is the equation U x =c

the elimination matrix

行变换

  1. subtract 3 times row1 from row 2 ==E21==
  2. subtract 2 times row 2 from row 3 ==E32==

So:

permutation:

exchange rows 1 and 2

交换单位矩阵(identity matrix)的行

但左乘无法对矩阵

\left[\right]
\left[\right] =
\left[\right]

c_{ij} = (\text{row } i \text{ of } A) \cdot (\text{column } j \text{ of } B) = \sum_{k=1}^n a_{ik}b_{kj}

\text{column of } A \times \text{row of } B = [m \times 1][1 \times p] \
AB = \sum (\text{column of } A) \cdot (\text{row of } B)

A = \
B = \
C =

A^{-1}A = I = AA^{-1}

A =

A = \
A^{-1}A = I \
A \times (\text{column } j \text{ of } A^{-1}) = \text{column } j \text{ of } I

\left[\right] \
将左侧变为单位阵,右侧就是A的逆矩阵 \
\left[\right] \to
\left[\right] \
A^{-1} =

A = LU

(AB)(B^{-1}A^{-1}) = I \

AA^{-1} = I\ \text{两侧同时转置} \
(A^{-1})^\top A^\top = I \
(A^{-1})^\top = (A^\top)^{-1}

A = \
E_{21} = \
E_{21}A = U \
U = \
A = LU \
L = E_{21}^{-1} = \
有时候会把主元单独列出来 \
A =

= LDU

E_{32}E_{21} = E \

=
\
L = E_{21}^{-1}E_{32}^{-1} =

=

P^{-1} = P^\top

$$

Author

LLLLAAAA

Posted on

2025-03-22

Updated on

2025-03-22

Licensed under

Comments